# 简单明了计算机网络基础知识
你是一台电脑,你的名字叫 A
很久很久之前,你不与任何其他电脑相连接,孤苦伶仃。
直到有一天,你希望与另一台电脑 B 建立通信,于是你们各开了一个网口,用一根网线连接了起来。
用一根网线连接起来怎么就能"通信"了呢?我可以给你讲 IO、讲中断、讲缓冲区,但这不是研究网络时该关心的问题。
如果你纠结,要么去研究一下操作系统是如何处理网络 IO 的,要么去研究一下包是如何被网卡转换成电信号发送出去的,要么就仅仅把它当做电脑里有个小人在开枪吧~
反正,你们就是连起来了,并且可以通信。
第一层
有一天,一个新伙伴 C 加入了,但聪明的你们很快发现,可以每个人开两个网口,用一共三根网线,彼此相连。
随着越来越多的人加入,你发现身上开的网口实在太多了,而且网线密密麻麻,混乱不堪。(而实际上一台电脑根本开不了这么多网口,所以这种连线只在理论上可行,所以连不上的我就用红色虚线表示了,就是这么严谨哈哈~)
于是你们发明了一个中间设备,你们将网线都插到这个设备上,由这个设备做转发,就可以彼此之间通信了,本质上和原来一样,只不过网口的数量和网线的数量减少了,不再那么混乱。
你给它取名叫集线器,它仅仅是无脑将电信号转发到所有出口(广播),不做任何处理,你觉得它是没有智商的,因此把人家定性在了物理层。
由于转发到了所有出口,那 BCDE 四台机器怎么知道数据包是不是发给自己的呢?
首先,你要给所有的连接到集线器的设备,都起个名字。原来你们叫 ABCD,但现在需要一个更专业的,全局唯一的名字作为标识,你把这个更高端的名字称为 MAC 地址。
你的 MAC 地址是 aa-aa-aa-aa-aa-aa,你的伙伴 b 的 MAC 地址是 bb-bb-bb-bb-bb-bb,以此类推,不重复就好。
这样,A 在发送数据包给 B 时,只要在头部拼接一个这样结构的数据,就可以了。
B 在收到数据包后,根据头部的目标 MAC 地址信息,判断这个数据包的确是发给自己的,于是便收下。
其他的 CDE 收到数据包后,根据头部的目标 MAC 地址信息,判断这个数据包并不是发给自己的,于是便丢弃。
虽然集线器使整个布局干净不少,但原来我只要发给电脑 B 的消息,现在却要发给连接到集线器中的所有电脑,这样既不安全,又不节省网络资源。
第二层
如果把这个集线器弄得更智能一些,只发给目标 MAC 地址指向的那台电脑,就好了。
虽然只比集线器多了这一点点区别,但看起来似乎有智能了,你把这东西叫做交换机。也正因为这一点点智能,你把它放在了另一个层级,数据链路层。
如上图所示,你是这样设计的。
交换机内部维护一张 MAC 地址表,记录着每一个 MAC 地址的设备,连接在其哪一个端口上。
MAC 地址端口bb-bb-bb-bb-bb-bb1cc-cc-cc-cc-cc-cc3 aa-aa-aa-aa-aa-aa4 dd-dd-dd-dd-dd-dd5
假如你仍然要发给 B 一个数据包,构造了如下的数据结构从网口出去。
到达交换机时,交换机内部通过自己维护的 MAC 地址表,发现目标机器 B 的 MAC 地址 bb-bb-bb-bb-bb-bb 映射到了端口 1 上,于是把数据从 1 号端口发给了 B,完事~
你给这个通过这样传输方式而组成的小范围的网络,叫做以太网。
当然最开始的时候,MAC 地址表是空的,是怎么逐步建立起来的呢?
假如在 MAC 地址表为空是,你给 B 发送了如下数据
由于这个包从端口 4 进入的交换机,所以此时交换机就可以在 MAC地址表记录第一条数据:
MAC:aa-aa-aa-aa-aa-aa-aa 端口:4
交换机看目标 MAC 地址(bb-bb-bb-bb-bb-bb)在地址表中并没有映射关系,于是将此包发给了所有端口,也即发给了所有机器。
之后,只有机器 B 收到了确实是发给自己的包,于是做出了响应,响应数据从端口 1 进入交换机,于是交换机此时在地址表中更新了第二条数据:
MAC:bb-bb-bb-bb-bb-bb 端口:1
过程如下
经过该网络中的机器不断地通信,交换机最终将 MAC 地址表建立完毕~
随着机器数量越多,交换机的端口也不够了,但聪明的你发现,只要将多个交换机连接起来,这个问题就轻而易举搞定~
你完全不需要设计额外的东西,只需要按照之前的设计和规矩来,按照上述的接线方式即可完成所有电脑的互联,所以交换机设计的这种规则,真的很巧妙。你想想看为什么(比如 A 要发数据给 F)。
但是你要注意,上面那根红色的线,最终在 MAC 地址表中可不是一条记录呀,而是要把 EFGH 这四台机器与该端口(端口6)的映射全部记录在表中。
最终,两个交换机将分别记录 A ~ H 所有机器的映射记录。
左边的交换机
MAC 地址端口bb-bb-bb-bb-bb-bb1cc-cc-cc-cc-cc-cc3 aa-aa-aa-aa-aa-aa4 dd-dd-dd-dd-dd-dd5 ee-ee-ee-ee-ee-ee 6 ff-ff-ff-ff-ff-ff 6gg-gg-gg-gg-gg-gg 6 hh-hh-hh-hh-hh-hh 6
右边的交换机
MAC 地址端口bb-bb-bb-bb-bb-bb1cc-cc-cc-cc-cc-cc1 aa-aa-aa-aa-aa-aa1 dd-dd-dd-dd-dd-dd1 ee-ee-ee-ee-ee-ee 2 ff-ff-ff-ff-ff-ff 3gg-gg-gg-gg-gg-gg 4 hh-hh-hh-hh-hh-hh 6
这在只有 8 台电脑的时候还好,甚至在只有几百台电脑的时候,都还好,所以这种交换机的设计方式,已经足足支撑一阵子了。
但很遗憾,人是贪婪的动物,很快,电脑的数量就发展到几千、几万、几十万。
第三层
交换机已经无法记录如此庞大的映射关系了。
此时你动了歪脑筋,你发现了问题的根本在于,连出去的那根红色的网线,后面不知道有多少个设备不断地连接进来,从而使得地址表越来越大。
那我可不可以让那根红色的网线,接入一个新的设备,这个设备就跟电脑一样有自己独立的 MAC 地址,而且同时还能帮我把数据包做一次转发呢?
这个设备就是路由器,它的功能就是,作为一台独立的拥有 MAC 地址的设备,并且可以帮我把数据包做一次转发,你把它定在了网络层。
注意,路由器的每一个端口,都有独立的 MAC 地址
好了,现在交换机的 MAC 地址表中,只需要多出一条 MAC 地址 ABAB 与其端口的映射关系,就可以成功把数据包转交给路由器了,这条搞定。
那如何做到,把发送给 C 和 D,甚至是把发送给 DEFGH.... 的数据包,统统先发送给路由器呢?
不难想到这样一个点子,假如电脑 C 和 D 的 MAC 地址拥有共同的前缀,比如分别是
C 的 MAC 地址:FFFF-FFFF-CCCC
D 的 MAC 地址:FFFF-FFFF-DDDD
那我们就可以说,将目标 MAC 地址为 FFFF-FFFF-?开头的,统统先发送给路由器。
这样是否可行呢?答案是否定的。
我们先从现实中 MAC 地址的结构入手,MAC地址也叫物理地址、硬件地址,长度为 48 位,一般这样来表示
00-16-EA-AE-3C-40
它是由网络设备制造商生产时烧录在网卡的EPROM(一种闪存芯片,通常可以通过程序擦写)。其中**前 24 位(00-16-EA)代表网络硬件制造商的编号,后 24 位(AE-3C-40)是该厂家自己分配的,一般表示系列号。**只要不更改自己的 MAC 地址,MAC 地址在世界是唯一的。形象地说,MAC地址就如同身份证上的身份证号码,具有唯一性。
那如果你希望向上面那样表示将目标 MAC 地址为 FFFF-FFFF-?开头的,统一从路由器出去发给某一群设备(后面会提到这其实是子网的概念),那你就需要要求某一子网下统统买一个厂商制造的设备,要么你就需要要求厂商在生产网络设备烧录 MAC 地址时,提前按照你规划好的子网结构来定 MAC 地址,并且日后这个网络的结构都不能轻易改变。
这显然是不现实的。
于是你发明了一个新的地址,给每一台机器一个 32 位的编号,如:
11000000101010000000000000000001
你觉得有些不清晰,于是把它分成四个部分,中间用点相连。
11000000.10101000.00000000.00000001
你还觉得不清晰,于是把它转换成 10 进制。
192.168.0.1
最后你给了这个地址一个响亮的名字,IP 地址。现在每一台电脑,同时有自己的 MAC 地址,又有自己的 IP 地址,只不过 IP 地址是软件层面上的,可以随时修改,MAC 地址一般是无法修改的。
这样一个可以随时修改的 IP 地址,就可以根据你规划的网络拓扑结构,来调整了。